Tablee III
Cabbonyı, and Imino Infrared Absurption Bands ${ }^{\text {a-c }}$

Compd.	$(-0 . \mu$	$\mathrm{C}=\mathrm{N}, \mu$
I	$5.78,5.85$	6.17
II	$5.80,5.88$	\ldots
III	5.82	6.19
IV	$5.70,5.77$	6.15
V	$5.73,5.91$	6.12
VI	5.76	6.17
VII	5.80	6.18
VIII	$5.67,5.74$	6.22
IX	5.77	6.21
X	5.77	6.21
XI	5.83	6.16
XII	5.79	6.20
XIII	5.81	6.17
XIV	$5.78,5.84$	6.16
XV	$5.80,5.85$	6.19
XVI	$5.66,5.73$	6.04
XVII	$5.82,5.86$	6.08
XVIII	$5.80,5.86$	6.16
XIX	$5.82,5.87$	6.15

a All specti'a were obtained using KBr plates. ${ }^{\circ}$ The presence uf two carbonyl bands indicates a mixture of monomer and dimer in the solid state. On the basis of earlier work [see L. J. Bellamy, "The Infared Spectra of Complex Molecules," John Wiley and Sons, Inc., New York, N. Y., 1958; E. J. Hartwell, R. E. Richards, and H. W. Thompson, J. Chem. Soc., 1436 (1948); M. St. C. F'lett, ibid., $962(1951)]$ the lower wave-length band has been assigned to the carbonyl absorption of the monomer while the higher wave-length band has been assigned to the carbonyl absorption of the dimer. © F. Mathis, Compt. Rend., 232, 505 (1961), reported that infrared absorption bands due to oxime innino gronps lie in the $5.95-6.20 \mu$ region. His studies indicated that aronatic oximes absorbed at higher wave lengths than did the aliphatic oximes. The same effect was observed in this work on oxine ethers. ${ }^{d}$ An inino band in the $6-\mu$ region was not observed.

5-Nitro-2-furfural. ${ }^{10}$-This compound was used without purification.

2-Phenylcyclopentanone.-Tin Zoeren's method ${ }^{11}$ for the syllthesis of 2-(2-thienyl)cyclopentanone was employed. A 45% yield of product was obtained which boiled at $14 \overline{5}-148^{\circ}$ (16 mm .), n^{23}, 1.5515.

Ethyl Aminooxyacetate.-The method described by Frank and Riedl ${ }^{7}$ for the preparation of methyl aminooxyacetate was employed here. The product was an oil; yield, 53\%; $n^{25} \mathrm{D} 1.4267$. The hydrochloride salt melted at $11 \overline{5}-117^{\circ}$.

Anal. Calcd. for $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{3} \cdot \mathrm{HCl}: \mathrm{C}, 30.88 ; \mathrm{H}, 6.48 ; \mathrm{N}, 9.00$. Found: C, 30.96 ; H, 6.29 ; N, 9.02 .

Aminooxyacetic Acid Derivatives, Method A.-A solution of the aldellyde or ketone and 1 equiv. of aminooxyacetic acid hemiliydrochloride (Eastman) was made in about 25 times its weight of 90% ethanol. To the solution was added 3.3 equiv. of sodinn acetate. The mixture was stirred and refluxed for 2 hr . The solvent was then evaporated in vacuo. The residue was slurried in an equal volume of water and made alkaline with 10% aqueous sodium hydroxide solution. The unchanged aldehyde or ketone was renoved by filtration or by extraction with ether. The aqueous phase was then made acidic to congo red indicator paper and the product was isolated by filtration or by extraction with ether and recrystallized.

Method B.-To a solution of the aldehyde or ketone and 1 equiv. of aminooxyacetic acid hemihydrochloride in 90% ethanol (as in A) was added 1 equiv. of triethylamine and the solution was reflused for 2 hr . The solvent was removed in vacuo. The residue was then washed with water and recrystallized.

Method C.-Benzene was substituted for 90% ethanol as the solvent, but the procedure outlined for B was otherwise employed. The reaction mixture was heterogenous during the entire reaction period.

[^0]Method D.--Aninnoxyacetic acid hemiliydrochlanide was allowed to react with 9 -antliraldelyde (Aldrich) (12.3 g .) according t.u R. A yellow solid (4.2 g .) was isolated which melted :at 1 Ss 100° dec:, but the elemental analyses $\left(\mathrm{C}_{48} \mathrm{H}_{3!} \mathrm{N}_{4} \mathrm{O}\right)$: , after tw'. recrestallizations from ethanol, indicated that it was not the desired product. This niaterial (3 g .) was refluxed for 5 hr . in 50 ml . of 1.4 othanolie liydrogen chloride. The solution was file ered and evaporated in racno. The residne was rearystallized twirc from petrolemin ether (b.p. 60-90) and there resulted 1.1 g . af vellow needles which fluoresced blue, m1.p. $99-70^{\circ}$. This mitu(rial analyzed correctly as the ethyl ester of the desired produc:

Method E.-A solution of the aldehyde and 1 equiv. of ethyl anincoxyacetate in about 25 tinnes its weight of absolute ethanol was reflused for '2 hr. The solvent was removed in mono and the residue was recrystallized.

Acknowledgments.--The author is indebted to Mrs. Janice Henl and Mr. Willian F. Boyd who lan the infrared spectra, :nd ta Mr. Martin Gordon and Mr. Raymond Snider who performed the micromalyses. The author's appreciation is also extended to Mr. John Schanl who prepared the 2-plenylcyclopentanone.

Agents Affecting Lipid Metabolism. XII. N,N'-Disubstituted Cyclohexane-1,4-bis(methylamines) ${ }^{1}$

Leslie (. Humber

Ayerst Resench Laboratories, Montreal, Canada

Received June 5, 196'.
The discuvery of potent alolesterol biosynthesis inhibitory activity in compounds related to N, N^{\prime}-dibenzylethylenediamine ${ }^{2}$ has led to the synthesis of trans-1,4-bis(2-chlorobenzylaminomethyl)cyclohexane, whose biological properties have already been described. ${ }^{3}$ We wish to report here, the synthesis of this compound and of a variety of related symmetrical compounds which retain the cyclohexane-1,4-bis(nethylamine) moiety. T'ables I and II describe these compounds, and Tables III and IV describe internediates used in their preparation.

Experimental ${ }^{4}$

Method A. N, N'-Di(2-chlorobenzylidine)cyclohexane-trans-1,4-bis(methylamine).-2-Chlorobenzaldeliyde (28.4 g., 0.2 mole) and cyclohexane-trans-1,4-bis(methylanine) (14.2 g ., 0.1 mole) were refluxed in benzene solution (300 ml .) until the theoretical volume of water had been collected in a Dean-Stark trap (ca. 3 hr .). The benzene was rennoved in vacuo, and the residue was crystallized from benzene. It had m.p. $150-154^{\circ}$ (38.0 g .), $\lambda_{\max } 250 \mathrm{~m} \mu(\epsilon 31,300), \nu_{\max }^{\mathrm{CHCl}} 1640 \mathrm{~cm} .^{-1}$.

Anal. Caled. for: $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{2}: \mathrm{Cl}, 18.31$. Found: Cl , 17.92.
$\mathbf{N}, \mathbf{N}^{\prime}$-Di(2-chlorobenzyl)cyclohexane-trans-1,4-bis(methylamine) (Table I, 4), The above bis Schiff base (37.0 g .) was suspended in methanol (500 ml.) and sodium borohydride (7.5 g .) was added portinmise at :t rate permitting gentle reflux. The mixture became homogenenus as the reduction proceeded. After refluxing for 16 lir., the methand was removed in vacuo and the residne was distributed between chloroform and water. The chloroform layer was washed with water, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), inld evaporated in vacuo to yield the product (35.5 g .) as a solid, m.p. 1()1-103 (ethanol). The dilydrochloride salt was prepared in methanol solution with methanolic hydrogen chloride. Crystallization yielded analytically pure material.

[^1]Table I
N, N^{\prime}-Dibenzyl Derivatives of Cyclohexane-1,4-bis(methylamine) a

No.	R	M.p., ${ }^{\circ} \mathrm{C}$.	Recryst. Solvent	Formula	$\overbrace{\text { Calcd. }} \% \mathrm{~N}-$		$\overbrace{\text { Calcd, }} \% \mathrm{Cl}-\text { Found }$	
1	$\ldots{ }^{\text {. }}$	358 dec.	c	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}^{\text {d }}$	17.93	17.84
2	-	307 dec.	f, g	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}^{h}$. .		17.93	17.64
3	2-Chloro	286-288	f, g	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.03	5.80	30.54	30.54
4	2-Chloro ${ }^{\text {b }}$	298-300	f, g	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.03	5.87	30.54	30.45
5	2-Chloro ${ }^{\text {e }}$	232-234	f, g	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}^{i}$	30.54	30.31
6	3-Chloro	314-315	c, j	$\mathrm{C}_{22} \mathrm{H}_{88} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.03	5.77	30.54	30.32
7	4-Chloro	>360	f, g	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.03	5.87	30.54	30.38
8	2,6-Dichloro	263-264	f, g	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.25	5.11	39.87	39.75
9	2,4-Dichloro	308-309	f, g	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.25	5.11	39.87	39.78
10	3,4-Dichloro	328-330	k	$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{Cl}_{4} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.25	5.13	39.87	39.54
11	2-Bromo ${ }^{\text {b }}$	286-288	f, g	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.06	4.80	12.82	12.76
12	2-Bromo ${ }^{\text {e }}$	218-220	f, g	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.06	4.95	12.82	12.70
13	3-Bromo	312	f	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.06	5.16	12.82	13.13
14	4-Bromo	>360	c	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.06	4.72	12.82	12.84
15	2-Fluoro ${ }^{\text {b }}$	301-302	c	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}^{l}$			16.44	16.31
16	2-Fluoro ${ }^{\text {e }}$	246-248	$f_{1} g$	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}^{m}$			16.44	16.31
17	3-Fluoro	336-337	f	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.49	6.44	16.44	16.49
18	4-Fluoro	364-365	f	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~F}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.49	6.38	16.44	16.65
19	2-Methyl	320 dec.	f, g	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.61	6.75	16.74	16.63
20	4-Methyl	357-358	c, f	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.61	6.31	16.74	16.75
21	4-Isopropyl	321-322	f	$\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.84	5.72	14.80	15.06
22	2,4,6-Trimethyl	>360	f, g	$\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.84	5.65	14.80	14.49
23	2-Chloro-5-methyl	275-276	f, g	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	28.80	27.92
24	2-Chloro-6-methyl	>360	c, j	$\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.69	5.59	28.80	28.76
25	2-Methoxy	250-252	j	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	6.15	6.39	15.57	15.32
26	2,3-Dimethoxy	235 dec.	$f_{1} g$	$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{HCl}$. .		13.76	14.19
27	3,4-Dimethoxy	239-241	f, g	$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{4} \cdot 2 \mathrm{HCl}$	5.43	5.45	13.76	13.89
28	3,4,5-Trimethoxy	248-249	f	$\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{O}_{6} \cdot 2 \mathrm{HCl}$	4.89	5.02	12.36	12.27
29	3,4-Dibenzyloxy	186-188	f, g	$\mathrm{C}_{50} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	3.42	3.55	8.64	8.69
30	2-Hydroxy	146-149	f	$\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{\text {n,o }}$	\cdots	
31	2-Nitro	259-260	g, j	$\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{4} \cdot 2 \mathrm{HCl}$	11.54	11.64	14.61	14.27
32	2-Amino	197 dec.	j	$\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{~N}_{4} \cdot 2 \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{4}{ }^{p, q}$	9.58	9.61	...	
33	2-Methylthio	271-272	f, g	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{~S}_{2} \cdot 2 \mathrm{HCl}$	5.74	5.47	14.54	14.30
34	4-Acetamido	>360	c	$\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	10.99	10.78	13.91	13.65
35	4-Dimethylamino	>360	$g_{1} j$	$\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{~N}_{4} \cdot 4 \mathrm{HCl}$	10.10	9.97	25.57	25.20
36	2-Trifluoromethyl ${ }^{\text {b }}$	265-269	f	$\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~F}_{6} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.27	5.38	13.34	13.15

a These compounds are mixtures of cis and trans isomers unless otherwise indicated and were prepared by method A (see Experimental) except for 33 which was prepared by method B, and 32 which was obtained by reducing 31 with Raney nickel in ethanol at atmospheric pressure and room temperature. ${ }^{b}$ This compound is a 1,4 -trans isomer. ${ }^{c}$ Water. ${ }^{d}$ Calcd.: C, 66.83; H, 8.16. Found: C, 67.19; $\mathrm{H}, 8.27$, e This compound is a 1,4 -cis isomer. ${ }^{f}$ Methanol. ${ }^{\circ}$ Ether. ${ }^{h}$ Calcd.: C, 66.83; H, 8.16. Found: 67.10; H, 8.26. ${ }^{i}$ Calcd.: C, 56.89; H, 6.51. Found: C, $56.63 ; \mathrm{H}, 6.66 .{ }^{i}$ Ethanol. ${ }^{k}$ Triturated with hot methanol. ${ }^{i}$ Calcd.: F, 8.81. Found: F, 8.67. ${ }^{m}$ Calcd.: F, 8.81. Found: F, 8.67. ${ }^{n}$ Calcd.: C, $74.54 ; \mathrm{H}, 8.53$. Found: C, 74.74 ; H, 8.57. o The diacetate salt has m.p. $195-196^{\circ}$ (methanol-ether). ${ }^{p}$ A diacid maleate salt. ${ }^{a}$ Calcd.: C, $61.61 ; \mathrm{H}, 6.89$. Found: C, 62.40; H, 6.90 .

This method was used for the synthesis of most of the compounds of Table I and for some of the compounds of Table II (see tables for exceptions). The cyclohexane-1,4-bis(methylamine) used was the trans, cis, or a mixture of isomers as required and was commercially available. The intermediate Schiff bases generally were not characterized by melting point or by elemental analysis but were used as the crude products. Most of the aldehydes required are described in the literature and were commercially available. The following aldehydes have not been previously reported.
2-Chloro-5-methylbenzaldehyde.-This compound was prepared from 2 -chloro-5-methylaniline in 34% yield by the method of Jolad and Rajagopal. ${ }^{5}$ The semicarbazone derivative had m.p. 248-250 ${ }^{\circ}$.

Anal. Calcd. for: $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{Cl}$, 16.75. Found: Cl , 16.72.

2-Chloro-6-methylbenzaldehyde was prepared in 31% yield from the corresponding aniline and had b.p. 74° (0.4 mm .). The semicarbazone had m.p. 234-236 ${ }^{\circ}$ dec.
(5) S. D. Jolad and S. Rajagopal, Naturwiss., 48, 645 (1961),

Anal. Calcd. for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{ClN}_{3} \mathrm{O}: \mathrm{Cl}$, 16.75. Found: Cl , 16.58 .

2-Trifluoromethylbenzaldehyde was prepared in 20\% yield from the corresponding acid chloride by reduction with lithium tri- t-butoxyaluminum hydride in diglyme at $-78^{\circ} .^{6}$ It was purified through the bisulfite adduct and had b.p. $28-38^{\circ}(0.3-0.6$ mm .) and $\nu_{\max }^{\mathrm{CHI}}{ }^{2} 1700 \mathrm{~cm} .^{-1}$.

Method B.-Most of the compounds of Table II were prepared by reduction of the diamides of Tables III and IV. The diamide was added to a suspension of an equal weight of lithium aluminum hydride in anhydrous tetrahydrofuran ($20 \mathrm{ml} . / \mathrm{g}$. of diamide). The mixture was refluxed with stirring for 24 hr ., cooled, and the excess reagent was destroyed by the cautious addition of water. The diamines were converted to their disalts by the usual procedures and were crystallized to analytical purity.

Method C. N,N'-Dibutyrylcyclohexane-trans-1,4-bis(methylamine) (Table III, 3).-Butyryl chloride (25 g ., 0.236 mole) in benzene was added dropwise to a solution of cyclohexane-trans-1,4-bis(methylamine) ($14.2 \mathrm{~g} ., 0.1$ mole) in water (100 ml .)

Thbie II
N,N'-Di(Aralkyl and Nonaromatic) Derivatives of Cyclohexanf-1,4-bis(methylamine) ${ }^{2}$

						--.\% N		---mers	
No.	R:	$\begin{aligned} & \text { H.p. } \\ & { }^{\circ} \mathrm{C} \text {. } \end{aligned}$	Recrystn. solvent	Method	Formula				
1	NH_{2}	>320	1.	c	$\mathrm{Cr}_{8} \mathrm{H}_{15 \mathrm{~N}}^{2} \cdot 2 \mathrm{HCl}$			32.95	32.69
2	NHCH_{3}	>310	1.	B (III)	$\mathrm{Cl}_{12} \mathrm{H}_{29} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	11.52	11.27	29.15	29.1:;
3	$\mathrm{NHC}_{2} \mathrm{Hb}_{5}$	>310	1 ,	B (III)	$\mathrm{C}_{12} \mathrm{H}_{2} \mathrm{~N} \cdot 2 \cdot 2 \mathrm{HCl}$	10.53	9.90	26.14	$26.1 ;$
4	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}{ }^{\text {d }}$	>310	1.	13 (1I)	$\mathrm{C}_{16} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HI} \mathrm{I}^{\text {l }}$	8.16	8.60	21.66	22.2;
i)	$\mathrm{NHCH} 2 \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	>310	\%	1	$\left({ }_{16} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HCOI}\right.$	8.56	8.54	21.66	21.9
;	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	>310	\%	A	CoH38N: 2 HCl	\%.88	$\div 7$	19.98	19.92
7	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}{ }^{\text {d }}$	>310	*	13 (115)	$19 \mathrm{H}_{46} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	(; . 81	6.81	17.23	14.21
8	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}{ }^{f}$	>310	\%	A	$\left(2 \mathrm{H}_{54} \cdot \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}\right.$	5.9	; 8.8	14.42	14.65
9	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right):$	>310	"	${ }^{\prime}$	$\mathrm{C}{ }_{8} \mathrm{H}_{58} \mathrm{~N}_{2} \cdot 2 \mathrm{Hf} \mathrm{C}^{1}$	\%. g_{0}	5.69	$1+31$	$1+16$
10		>360	1,	A	$\mathrm{Cr}_{88} \mathrm{H}_{36} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	(i) 9	7.26	17.58	1: 4.3
11	$\mathrm{NHCH}_{5} \mathrm{C}_{6} \mathrm{H}_{11}{ }^{\text {h, }}$ d	>360	b	A, 3 (11I)	$\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N}-2 \mathrm{HCl}$	6. 88	6.84	17.40	15.38
12	$\mathrm{NHCH}_{2} \mathrm{C}_{6} \mathrm{H}_{11}{ }^{\text {h }}$, ${ }^{\text {i }}$	>360	b	B (III)	$\mathrm{C}_{2} \mathrm{H}_{40 \mathrm{~N}} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.88	6.41	15.40	17.62
13	$\mathrm{NHCH}_{2} \mathrm{C}_{4} \mathrm{H}_{5}{ }^{\text {, }}{ }^{\text {d }}$	>310	b, k	B (III)	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	7.97	- 92	20.18	20.14
14	NHCH4C6H9 ${ }^{\text {l }}$	>310	e	13 (ILI)		7,38	- 29	18.99	18.62
1.1	$\left.\mathrm{NHCH}_{2}-2\right\rangle^{\prime}$	>310	$6, m$	13 (IV)	$\mathrm{Cu}_{4} \mathrm{H}_{35} \mathrm{Na} \cdot 2 \mathrm{HCO}$	6.50	6. 96	16. 59	16, 6\%
10		>310	e	n	C34 $\mathrm{H}_{4} \mathrm{~N} \cdot 2 \mathrm{HCl}$	6. 49	(9) 60	111.1:;	16.41
17		161-163	t, m	13 (III)	$\mathrm{Cu}_{2} \mathrm{H}_{3} \mathrm{~N}_{2} \cdot 2 \mathrm{CH}_{3} \mathrm{COOH}^{\circ}$	\ldots \cdot	
18		>310	ε	B (III)	$\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	ti. 43	6.76	16.28	18.15
19	$\mathrm{NH}^{\mathrm{C}} \mathrm{CHF}_{2} 3_{3} \mathrm{C}_{6} \mathrm{H}_{4}{ }^{4}$	>310	b	B (III)	$\mathrm{C}_{26} \mathrm{H}_{60} \mathrm{~N}_{2} \cdot 2 \mathrm{HClI}$	6.03	6.39	15.30	15.23
20		315 dec .	p, q	B (1)	$\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{No}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{HLCl}$	6.82	6.69	15.23	1\%.1\%
21	$\mathrm{NHC}\left(\mathrm{CH}_{3}\right)^{\text {d }}$	>310	b.m	13 (IV)	$\mathrm{C}_{16} \mathrm{H}_{84} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}^{1}$	-•.		16.13	14.91
$2: 2$	$\mathrm{NHC}\left(\mathrm{CH}_{8}\right)_{2} \mathrm{CH} \mathrm{C}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}{ }^{\text {d }}$	>310	b, m	3 (IV)	$\mathrm{C}_{4} \mathrm{H}_{60} \cdot \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}^{\text {r }}$	8.56	8.21	21.66	20.91
23	N $\mathrm{HC}_{5} \mathrm{H}_{8}{ }^{\text {d }}{ }^{\text {d }}$	>310	b, m	A	$\mathrm{O}_{18} \mathrm{H}_{34} \mathrm{~V}_{2} \cdot 2 \mathrm{HCl}$	8.97	7.98	20.16	19.98
24	$\stackrel{-1}{ } \mathrm{HC}_{6} \mathrm{H}_{11}{ }^{\text {h }}$, d	>360	s	A, B (IV)	$\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{~N}_{2} \cdot 2 \mathrm{HICl}$	5.38	7.36	18.69	18.82
25	$\mathrm{NHC}_{7} \mathrm{H}_{13}{ }^{\text {t, }}$ d	>360	b	13 (IV)	$\mathrm{C}_{22} \mathrm{H}_{42} \cdot \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.88	7.09	17.40	17.55
20	$\mathrm{NHC} \mathrm{C}_{8} \mathrm{H}_{164}{ }^{\text {u }}$, ${ }^{\text {d }}$	186-188	s	A	$\mathrm{C}_{24} \mathrm{H}_{46} \mathrm{Nu} \cdot 2 \mathrm{CHH}_{3} \mathrm{COOH}^{p}$	
2 2		>320	h, m	A	($22 \mathrm{H} \mathrm{H}_{86} \mathrm{~N}: 2 \mathrm{HCl}$	(9, 34	7.01	17.58	17,47
28		195-197	$7 . m$	A	$\mathrm{C}_{24} \mathrm{H}_{4} \mathrm{~N} \cdot \mathrm{H} \cdot 2 \mathrm{CH}_{3} \mathrm{COOH}^{\text {a }}$	\ldots	\cdots	\ldots	
29		>320	e	A	$\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	(i. 87	6.94	15.41	15.37
30		94-96	q	A	$\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{4}{ }^{x}$	16.66	16.93	\cdots	
31		137-14!	z	A	$\mathrm{Con}_{3} \mathrm{H}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{464}$	8.28	8.31	\ldots	
32		191-197 ${ }^{\text {bb }}$	b	A	$\mathrm{Cr}_{4} \mathrm{H}_{38} \mathrm{NSO}_{2}{ }^{\text {cem }}$	8.28	8.26		
33	$\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~V}^{-d}\right.$ d d d	>360	3	B (IV)		$\times 6$	8.47	21.4:	220.1
34	$\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{~N}^{\text {deem }}$	>360	b	B (IV)	$\mathrm{C}_{15} \mathrm{H}_{34} \mathrm{~N} \cdot 2 \cdot 2 \mathrm{HCl}^{\text {/ }}$				
35	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N}^{\text {d }}$. $8 g$	358 dec.	${ }^{1}$	B, (IV)	$\mathrm{C}_{22} \mathrm{H}_{40} \mathrm{~N} \cdot 2 \mathrm{HCl}$	7.35	7.13	18.89	18.3
36	$\begin{aligned} & \mathrm{N}\left(\mathrm{CHI}_{3}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{6}{ }^{d} \\ & (\mathrm{CHE})_{3} \mathrm{CH}_{3}{ }^{d} \end{aligned}$	248 dec.	m, s	h^{\prime}	$\mathrm{C}_{44} \mathrm{H}_{84} \mathrm{~N}_{4} \cdot 2 \mathrm{HCl}$	6.61	6.39	16.7.7	16.12
37	N	213-215	$b . m$	B (III)	$\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{Cl}_{2} \mathrm{~N} \cdot 2 \cdot 2 \mathrm{HCl}$	4.86	4.74	24.60	27.45
38	$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}^{\text {i } i, d}$	342	b	B (IV)	$\mathrm{C}_{26} \mathrm{H}_{34} \cdot \mathrm{M}_{2} \cdot 2 \mathrm{HBr}{ }^{\prime \prime}$	5.22	5.40	...	
39		162-163	z	$k k$	$\mathrm{C}_{45} \mathrm{H}_{38} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{4}$	i. 23	5.17	13.24	13.32
	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{6} \mathrm{Cl}-0$								
40	$\mathrm{NHC}_{3} \mathrm{H}_{9}{ }^{d},{ }^{\text {, }}$,	>310	1	B (IV)	$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	(3.26	6.27	15.84	15.80
41		126-127	z	B (IV)	$\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{~N}_{2}{ }^{n n}$	7. 48	-. 41		
42	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{6}$	>360	${ }^{*}$	oc	$\mathrm{C}_{24} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$.	\ldots	16.74	16.82
43	$\mathrm{NHCH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{6}$	>360	$1, p$	A	$\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6.20	5.92	15.70	15.48
44	$\mathrm{NHCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{C}_{6} \mathrm{H}_{6}$	291-292	b	A	$\mathrm{C}_{86} \mathrm{H}_{30} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	6. 20	6.19	15.70	15.74
45	$\mathrm{NH}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{OC}_{6} \mathrm{H}_{5}$	295-296	e	A	$\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	6.15	6.18	15.55	15. 40
46	$\therefore \mathrm{HCH}_{2} \mathrm{Cl}_{10} \mathrm{H}_{7}{ }^{p p}$	355 dec.	p	A	$\mathrm{C}_{3} \mathrm{H}_{34} \mathrm{~N}_{2} \cdot 2 \mathrm{HCl}$	5.65	5.62	14.31	13.89
47	$\mathrm{NHCH} \mathrm{C}_{20} \mathrm{H}_{7} \mathrm{O}^{\text {a }}$	>360	b, m	A	$\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{Na} \cdot 2 \mathrm{HCl}$	5.65	i. 48	14.31	14.10
48	$\mathrm{NHCH}_{2} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}^{r r}$	264	${ }^{6}, m$	A	$\mathrm{O}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	7.46	-. 60	18.89	19.02
49	$\mathrm{NHCH}_{2} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}^{s 8}$	>360	,	A	$\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{~S}_{2} \cdot 2 \mathrm{HCl}$	6.88	6. 83	17.40	17.51

Table II (Continued)

${ }_{a}$ These compounds are mixtures of cis and trans isomers unless otherwise indicated. They were prepared by method A or B, the reduction of the diamides of Tables III or IV, as indicated. A few of the compounds were prepared by other methods as indicated by footnotes. ${ }^{b}$ Methanol. ${ }^{c}$ Prepared from the commercially available free base. ${ }^{d}$ This compound is a 1,4 -trans isomer. ${ }^{b}$ Ethanol. ${ }^{f}$ This compound is a mixture of the 6 - and 7 -octenyl derivatives. ${ }^{a}$ Prepared by catalytic hydrogenation of 8 in glacial acetic acid with platinum oxide at atmospheric pressure and room temperature. ${ }^{h} \mathrm{C}_{6} \mathrm{H}_{11} \equiv$ cyclohexyl. ${ }^{i}$ This compound is a 1,4 -cis isomer. ${ }^{i} \mathrm{C}_{4} \mathrm{H}_{7} \equiv$ cyclobutyl. ${ }^{k}$ Acetonitrile. ${ }^{2} \mathrm{C}_{5} \mathrm{H}_{9} \equiv$ cyclopentyl. ${ }^{m}$ Ether. ${ }^{n}$ Prepared by hydrogenation of 51 with platinum oxide in ethanol at room temperature and atmospheric pressure. ${ }^{\circ}$ Calcd.: $\mathrm{C}, 69.3 ; \mathrm{H}, 10.30$. Found: C, 69.10; H, 10.01. ${ }^{p}$ Water. ${ }^{q}$ Acetone. ${ }^{r}$ Good analyses could not be obtained for these two compounds. Thin layer chromatography and infrared spectra indicate that they exist in equilibrium with their free bases even when the salts are prepared under forcing conditions. ${ }^{4}$-Propanol. ${ }^{t} \mathrm{C}_{7} \mathrm{H}_{13} \equiv$ cycloheptyl. ${ }^{u} \mathrm{C}_{8} \mathrm{H}_{15} \equiv$ cyclooctyl. ${ }^{v}$ Calcd.: C, $69.66 ; \mathrm{H}, 11.28$. Found: C, 69.79 ; H, 11.47. ${ }^{w}$ Calcd.: C, $68.68 ; \mathrm{H}, 11.08$. Found: C, $68.76 ; \mathrm{H}, 10.58 .{ }^{x}$ Calcd.: $\mathrm{C}, 71.40 ; \mathrm{H}, 11.98$. Found: C, $71.42 ; \mathrm{H}, 11.87$. ${ }^{y}$ A low-melting ether-soluble isomer. ${ }^{2}$ Ethyl acetate. ${ }^{a a}$ Calcd.: C, 70.98; H, 11.31. Found: C, 71.12; H, 11.04. ${ }^{b b}$ A high-melting ether-insoluble isomer. ${ }^{c c}$ Calcd. C, 70.98; H, 11.31. Found: C, $71.11 ; \mathrm{H}, 11.46 .{ }^{d d} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N} \equiv$ pyrrolidino. ${ }^{e e} \mathrm{C}_{5} \mathrm{H}_{10} \mathrm{~N} \equiv$ piperidino. ${ }^{f f}$ Calcd. C, 61.54; H , 10.33. Found: C, 61.68; H, 10.10. ${ }^{g g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N} \equiv$ hexanethyleneimino. ${ }^{h h}$ Prepared by the Eschweiler-Clarke nodification of the Leuckart reaction on 1, Table I. ${ }^{i i} \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N} \equiv 1,2,3,4$-tetrahydroisoquinolino. ${ }^{i i}$ Calcd.: $\mathrm{Br}, 29.80$. Found: Br, 29.27. ${ }^{k k}$ Prepared by the action of ethyl chlorofornate on 4, Table I. ${ }^{n} \mathrm{C}_{4} \mathrm{H}_{3} \equiv 1$-indanyl. ${ }^{m m} \mathrm{C}_{9} \mathrm{H}_{9} \equiv 2$-indanyl. ${ }^{n n}$ Calcd.: C, $83.37 ; \mathrm{H}$, 9.15. Found: C, 83.16; H, 8.95. ${ }^{\circ o}$ Prepared by the alkylation of cyclohexane-1,4-bis(methylamine) with phenethylchloride in refluxing benzene. The free base had b.p. $224^{\circ}(0.4 \mathrm{~mm}$.$) . { }^{p p} \mathrm{C}_{10} \mathrm{H}_{7} \equiv 1$-naphthyl. ${ }^{q q}{ }^{q} \mathrm{C}_{10} \mathrm{H}_{7} \equiv 2$-naphthyl. ${ }^{r}{ }^{r} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O} \equiv 2$-furyl. ${ }^{s i} \mathrm{C}_{4} \mathrm{H}_{3} \mathrm{~S}$ \equiv 2-thienyl. ${ }^{t t} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} \equiv 2$-pyridyl. ${ }^{u w}$ Calcd.: $\mathrm{S}_{1} 11.65 ; \mathrm{H}_{2} \mathrm{O}, 4.9$. Found: $\mathrm{S}, 11.13 ; \mathrm{H}_{2} \mathrm{O}, 4.9 .{ }^{v{ }^{v}} \mathrm{C}_{5} \mathrm{H}_{6} \mathrm{~N} \equiv 4$-pyridyl. ${ }^{w w}$ Calcd.: S, 12.31. Found: $\mathrm{S}, 11.6 \overline{0}$.

Table III
N', N'-Diacyl Derivatives of Cyclohexane-1,4-bis(methylamine) ${ }^{a}$

	R_{1}								
No.		R_{2}	M.p., ${ }^{\circ} \mathrm{C}$.	Recrystn. Solvent	Formula	Calce.	Found	Caled.	Found
1	$\mathrm{H}^{\text {b }}$	H	186-188	c	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{\text {d }}$	\ldots			
2	CH_{3}	H	203-230 ${ }^{\text {c }}$	f	$\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{\text {8 }}$				
3	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}{ }^{\text {b }}$	H	208-209	c	$\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$	68.05	67.94	10.71	10.70
4	$\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}{ }^{\text {b }}$	H	194-195	i, j	$\mathrm{C}_{22} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2}$	72.08	72.44	11.55	11.21
5	$\mathrm{C}_{6} \mathrm{H}_{41}{ }^{k}{ }^{\text {h }}$	H	288-289	c	$\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}$	72.88	72.33	10.56	10.43
6	$\mathrm{C}_{6} \mathrm{H}_{11}{ }^{\text {k }}$, ${ }^{\text {a }}$	H	214-215	c	$\mathrm{C}_{22} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{m}$	72.88	73.11	10.56	10.42
7	$\mathrm{C}_{4} \mathrm{H}_{7}{ }^{\text {n }}$. ${ }^{\text {a }}$	H	246-247	c	$\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2}$	70.55	69.64	9.87	9.33
8	$\mathrm{C}_{5} \mathrm{H}_{9}{ }^{\text {a }}$.	H	264-265	c	$\mathrm{C}_{20} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}$	71.81	71.57	10.24	10.98
9		H	197-200	c	$\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{2}$	73.69	73.41	9.56	9.72
10	$-\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{11}{ }^{\text {k }}{ }^{\text {h }}$	H	276-278	c, i	$\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{O}_{2}$	73.19	73.47	10.84	10.52
11	- $\left(\mathrm{CH}_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{11}{ }^{\text {k }}$	H	220-221	,	$\mathrm{C}_{26} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{O}_{2}$	74.59	74.29	11.08	10.55
12	$2-\mathrm{CH}_{3} \mathrm{SC}_{6} \mathrm{H}_{5}$	H	172-173	i, j	$\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}{ }^{p}$	\ldots
13	$\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{3}{ }^{\text {b }}$	$\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl}^{8}$	146-148	,	$\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{\text {a }}$

${ }^{a}$ These compounds are mixtures of cis and trans isomers unless otherwise indicated; they were prepared by method C unless indicated to the contrary. ${ }^{b}$ This diformyl derivative was prepared from formic acid and cyclohexane-1,4-bis(methylamine) (see Experimental). ${ }^{c}$ Methanol. ${ }^{d}$ Calcd.: N, 14.14. Found: N, 14.21. ${ }^{\circ}$ The corresponding $1,4-t r a n s$ isomer is reported to have m.p. 230° [R. Malachowski, J. Wasowska, and S. Jozkiewicz, Ber., 71, 759 (1938)]. ${ }^{j}$ Ethyl acetate. ${ }^{8}$ Calcd.: N, 12.38. Found: N, 12.33. ${ }^{n}$ This compound is a 1,4 -trans isomer. ${ }^{i}$ Water. ${ }^{i}$ Ethanol. ${ }^{k} \mathrm{C}_{6} \mathrm{H}_{12} \equiv$ cyclohexyl. ${ }^{l}$ This compound is a 1,4 -cis isomer. ${ }^{m}$ Calcd.: $\mathrm{N}, 7.73$. Found: N, 7.63. ${ }^{n} \mathrm{C}_{4} \mathrm{H}_{7} \equiv$ cyclobutyl. ${ }^{\circ} \mathrm{C}_{5} \mathrm{H}_{9} \equiv$ cyclopentyl. ${ }^{p}$ Calcd:: N, 6.33; S, 14.49. Found: N, 6.11; S, 14.32. ${ }^{q} \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{Cl} \equiv$ 2-chlorobenzyl. ${ }^{r}$ Dioxane. ${ }^{s}$ Calcd.: $\mathrm{Cl}, 13.34 ; \mathrm{N}, \overline{5} .27$. Found: $\mathrm{Cl}, 13.12 ; \mathrm{N}, 5.26$.
and sodium hydroxide ($12.0 \mathrm{~g} ., 0.3$ mole) at ($)^{\circ}$. The solid amide was isolated by filtration and was crystallized from methanol to yield pure material, 19.5 g . (69%).

The acid chlorides used in the preparation of the diamides of Table III were obtained from the corresponding acids with thionyl chloride. The acids, or in some cases the acid chlorides, were commercially available except for the following: cyclohexylacetic acid and β-cyclohexylpropionic acid, prepared by catalytic hydrogenation of the corresponding aromatic acid; 1-cyclohexenecarboxylic acid ${ }^{7}$ and 2 -methylmercaptobenzoyl chloride. ${ }^{8}$
\mathbf{N}, \mathbf{N} '-Diformylcyclohexane-1,4-bis(methylamine) (Table III, 1).-Cyclohexane-1,4-bis(methylamine) (28.4 g., 0.2 mole)
and 90% formic acid ($25.6 \mathrm{~g} ., 0.5$ mole) were refluxed for 22 hr . in toluene (200 ml .) and the theoretical volume of water was collected in a Dean-Stark trap. The product was insoluble in toluene and was isolated by decantation of the solvent. Crystallization from methanol yielded pure material (30%).

Method D. N,N'-Hexamethylenecyclohexane-trans-1,4dicarboxamide (Table IV, 9).-Cyclohexane-trans-1,4-dicarboxyl chloride ${ }^{9}$ (10.0 g ., 0.05 mole) dissolved in benzene (30 ml .) was added dropwise to hexamethyleneimine (19.8 g., 0.2 mole) in benzene (200 ml .) and the mixture refluxed for 5 hr . The precipitate was removed by filtration and the filtrate was evapo-
(9) R. Malachowski, J. J. Wasowska, S. Jozkiewiez, J. Adamiczka, and G. Zinmerman-Pasternak, Ber., 71, $7 \mathbf{5 9}$ (1958).

Table IV
N, N^{\prime}-Polystbstituted Derivatives of trans-Cychohexane-1,4-dicarboxamidi; ${ }^{a}$

${ }^{2}$ These compounds were prepared by method D (see Experimental). ${ }^{5}$ Water. ${ }^{\circ}$ Ethanol. dCalcd.: N, 7.32 . Found: N, 7.44 .
 ${ }^{i}$ Calcd.: N, 7.i3. Found: N, 8.15. ${ }^{k} \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{~N} \equiv$ pyrolidino. ${ }^{1}$ Chloroform. ${ }^{*}$ Caled.: N, 10.07. Found: N, $9.96 .{ }^{n} \mathrm{C}_{0} \mathrm{H}_{10} \mathrm{~N} \equiv$ piperidino. ${ }^{\circ}$ Calcd.: N, 9.14. Found: N, 9.35. ${ }^{p} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{~N} \equiv$ hexamethyleneimino. ${ }^{\circ} \mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}=1,2,3$, 4-tetrahydroisoquinolino.
 ical sample sublimed at $280^{\circ}(0.01 \mathrm{~mm}$.) .
rated in racuo to yield a solid residue (20 g.). Crystallization from methanol yielded pure material.
In some cases the diamides were insoluble in benzene and theso were isolated by evaporating the reaction mixture to dryness and relloving amine hydrochloride by trituration with water. All the required amines were commercially available except ?indanylamine which was prepared as described by Levin, et al. ${ }^{10}$

Acknowledgment.-The author wishes to thank Tr_{r}. (.). Sawdyk, Mrs. H. Warwick, and Mr. T.. Hawkins for expert. technic:ll assistance.
(10) N. I.evin, B. E. Gralam, and H. G. Kolloff, J. Org. Chem., 9, 380 (1944).

Synthesis of $\mathbf{3 , 5 , 3} \mathbf{3}^{\prime}, 5^{\prime}$-Halogen-Substituted Thyropropionic Acids ${ }^{1}$

Terloo Matscura*
Forulty of Science, Osaka City Unievrsity, Smmiyoshikn Osaka, Japan
Received June 4, 1964

In the course of an investigation of the reaction of 4-hydroxy-3,5-diiodophenylpyruvic acid with analogs of 3,5-diiodotyrosine in the presence of oxygen to form analogs of thyroxine, ${ }^{3}$ it became necessary to synthesize various $3,5,3^{7}, 5^{\prime}$-tetrahalogenothyropropionic acids (see Table I). The synthesis of these compounds has been carried out according to the standard method using di- p-anisyliodonium bromide, ${ }^{4}$ followed by halogenation of 3,5-dihalogenothyropropionic acids obtained.

[^2]
Experimental ${ }^{\circ}$

Methyl 3-(4-Hydroxy-3,5-dihalogenophenyl)propionates.These esters were prepared by Fisclier's esterification of the corresponding acids ${ }^{3,9,7}$; diiodo ester, m.p. $74-75^{\circ}$; dibromo ester, in.p. $54-55^{\circ}$: dichloro ester, m.p. $70-72^{\circ}$.
General Procedure for the Preparation of 3,5-Dihalogenothyropropionic Acids ($\mathrm{I}, \mathrm{X}_{1}=\mathrm{H} ; \mathrm{X}_{:}=$Halogen), A slight. modification of the procedure of Ziegler :nd Maar ${ }^{4}$ was used for the preparation of these arids. A mixture of di-p-anisyliodoninun bromide ${ }^{\frac{1}{2}}(\$$ nimoles), methyl 3 -(4 -lydrosy-3, 5 -dihalogenophenyl)propionate (4 nimoles), triethylamine (4 mmoles), and copper powder ($\$$ mg.-atoms) in 4 ml . of methanol was stirred at room temperature for several honrs, then allowed to stand overnight. The copper powder was removed by filtration and washed with methanol. The filtrate and washing were combined and evaporated under reduced pressure. The residne was taken up in 50 ninl. of benzene and the benzene solution was washed with i N HCl , water, $1-V \mathrm{Na}) \mathrm{H}$, water, and 5% aqueous acetic acid, theri evaporated. The residue was subjected to stean distillution nutil no more p-iodoanisol distilled. The water was then decanted and the residue was refluxed for 2 hr. in a mixture of \mathcal{S} inl. of acetic acid and 8 ml . of concentrated HBr . In the preparation of $\mathrm{I}\left(\mathrm{X}_{1}=\mathrm{H}: \mathrm{X}_{2}=1\right)$, hydriodic arid $(d .7)$ was used in place of HBr . The reaction mixture was concentrated under reduced pressure and diluted with water to yield crystals of I.
Bromination of $\mathrm{I}\left(\mathrm{X}_{1}=\mathrm{Br}\right.$ or I$)$.-The bronination was carried outt in an acetic acid solution with an excess of brominc. After standing at room temperature for a few days, the reaction minture was worked up as usual.
Iodination of $\mathrm{I}\left(\mathrm{X}_{1}=\mathbf{H} ; \mathrm{X}_{2}=\mathrm{Cl}\right.$ or Br). -The iodination was carried out in an aquenns nethylamine solution according to the procedure of Kharasch, et al. ${ }^{\text {s }}$

[^3]
[^0]: (10) 11. Gilman and G. F. Wright. J. An. Chem. Soc., 62, 2550 (1930).
 (11) G. J. Van Zoeren, U. S. Patent 2.520,516 (1950); Chem. Abstr.. 45, 647d (1951).

[^1]: (1) For Part XI of this series see; D. Drornik, M. Kraml, and J. F. Bagli, J. Am. Chem. Soc., 86, 2739 (1964).
 (2) M. Kraml, I.. G. Humber, J, Dinbuc, and R. Gaudry, J. Med. Chem., 7 500 (1964).
 (3) (a) D. Dvornik, M. Kraml. J. Dubue, and R. Gandry, J. Am. Chem. Soc., 85, 3309 (1963); (b) C. Chappel. J. Dubuc, 1). Dvornik, M. (ivner, L. Hunber, M. Kraml, K. Voith, and R. Gaudry, Vature, 201, 497 (1964),
 (4) Melting points were taken on a Thomas-Hoover apparatus and are currected. Analyses were done by Mr. W. Turnbull and staff of our laboratories.

[^2]: (1) 'This work was supported by U. S. Public Health Service Grant AM 07955 frooll the National Institute of Arthritis and Metabolic Diseases.
 (2) Department of Synthetic Chemistry, Faculty of Engineering, Kyom Iniversity, Kyoto. Japall.
 (3) A. Nishinaga and T. Matsuura, J. Oro. C\%em., 29, 1812 (1904).

[^3]: (4) H. Ziegler and C. Maar, bid.. 27, 3335 (1962): sed also C. Hilldann, Z. Vaturforsoh., 11b, 419 (1956): P. F. Berilachila, J. T. Pati, mid W. Wenner. Ci. S. Patent, 2,89\%,927 (July 21, 1959).
 (5) Melting points were determined in capillary tubes. The micremalyses were made by Mr. J. Corda and his associates, of this fannlty.
 (6) I. H. Barnes, E. T. Borrowe, J. Vilks, J. A. Heons, :mil A. (i. Iun2. J. Chem. Soc., 2894 (1900).

 (8) N. Kharasch, S. IL, Kiffayan, and I. I). Alterberry, J. Org. Cheo, 21. 225 (1950).

